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AlllVlct-An earlied paper showed that general helicoidal shells (which include shells of revolution and
general cylindrical shells as limiting cases) admit arbitrarily large, one-dimensional strain fields. In the
present paper, the associated rotation and stress function fields are found. Introduction of the Euler
parameters from rigid body dynamics reduces the determination of the rotation field to a linear problem.
The equilibrium and compatibility equations are shown to reduce to six coupled scalar equations involving
three rotation functions, three stress functions, extensional strains, stress couples, and four constants, two
measuring the gross axial displacement and twist of the shell, and two measuring the net axial force and torque.
One field equation is a first integral of the compatibility equations; another, a first integral of the moment
equilibrium equations. Reissner's equations for the pure bending of curved tubes and Wan's equations for the
gross twisting and extension of right helicoidal shells fall out as special cases. Determination of the
displacement field in large inextensional bending reduces to quadratures, generalizing Reissner's result for aslit
shell of revolution.

L INTRODUCTION
The field equations of general shell theory are formidable partial differential equations. Their
solutions, even for simple geometries, loads, and constitutive laws, must usually be ap­
proximated by using large computer codes. The question, "When do these partial differential
equations reduce to ordinary ones?" is, curiosity aside, important for two reasons. First, since a
positive answer can be expected only for shells having simple shapes, these should be shells
that are relatively easy to manufacture and therefore, one hopes, of some practical use. Second,
because numerical methods for the solution of partial differential equations often differ
radically from those for ordinary differential equations, solutions of nonlinear, one-dimensional
shell problems can provide valuable benchmarks for all-purpose computer codes.

Shells with undeformed midsurfaces that are general helicoids admit one-dimensional strain
fields[1]. Of course, only special loads, boundary conditions, and material properties produce
these strains. Such a case is illustrated in Fig. 1where an elastically isotropic helical tube with a
thickness variation that is identical but arbitrary in every plane through its longitudinal axis, is
under a constant internal pressure p, an axial force P, and an axial torque T.

p

p

Fig. I. A loaded helicoidal shell with a one-dimensional strain field.

tThis work was supported by the National Science Foundation under grant CEE·8117103.
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A helicoid has the parametric representation

res, 0) = r(s)e,(O) + [bO + z(s)]ez, 0:5; S :5; L, - e:5; 0 :5; e. (1.1)

Here

e,(O) = cos Oe, +sin Oey, (1.2)

where {eXley,eZ} is a fixed, right-handed, orthonormal Cartesian frame, rand z are functions of
arc length s along a meridional cross-section (0 = constant), and b is the constant pitch of
the helicoid.

In classical shell theory, the extensional and bending strains are linear combinations of the
differences between, respectively, the metric and curvature coefficients of the deformed and
undeformed midsurface. If, in a helicoidal shell, these strains are functions of s only, then the
deformed mid-surface is the helicoid [1]

res, 0) = ;(s)e,(AO - T(S» +[58 + i(s )Je" (1.3)

where ;, i, and 1 are arbitrary, sufficiently smooth functions of s, and A and 5 are arbitrary
constants.

The path to the displacement form of the field equations is clear, but tedious and
unenlightening. The three equations of moment equilibrium are used to express the two
transverse shear stress resultants and the skew part of the stress resultant in terms of stress
couples and strains, and stresses are expressed in terms of strains via constitutive laws. Finally,
strains are expressed in terms of ;, i, T, A, and 5 using (1.1) and (1.3) and everything is
substituted into the three equations of force equilibrium. This produces three equations for ;, i,
and T. The constants A and 5 are determined when specific boundary value problems are
solved.

There are several drawbacks to a displacement formulation. First, whenever nearly in­
extensional deformation occurs, the field equations become ill-conditioned. Second, as Reiss­
ner's studies of shells of revolution[2-4] and curved tubes[5-7] have shown, a dual rotation­
stress function formulation, at least for these special cases of one-dimensional deformation,
leads to simple, lower order equations. And third, if we wish to allow for transverse shear and
"twisting" strains [8]. This approach leads to the field equations developed herein, which may
be thought of as integrated forms of the displacement field equations. However, unlike
the latter, they exhibit the static-geometric duality when linearized.

2. THE GEOMETRY OF DEFORMATION

In what follows a prime or dot denotes, respectively, the total or partial derivative with
respect to s or O. At each point of the undeformed midsurface (1.1) the base vectors

as = r' =cos 4>e, + sin 4>ez

and the unit normal

n = a -1/2( - r sin !/>c, - b cos 4>co + r cos !/>c,),

form a non-orthogonal frame {aJ == {aSt ae, n}, i = I, 2, 3. In (2.1) to (2.3)

cos 4> = r', sin 4> = Zl,

ee = - sin Oe, +cos Oey,

and

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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The deformation that carries {a;} at (s, 6) into the deformed frame {iiI == {i~, 8e. ii} associated
with (1.3) may be decomposed as follows. First, {ail is rotated rigidly into an intermediate frame
{Ai} == {A., Ai> N}, characterized by a proper orthogonal tensor (or rotator) Q: i.e.

(2.7)

Next, the frame {Ai} is given an additional rigid body rotation, characterized by a shearing
twist strain rotator r that brings N into coincidence with ii.

Finally, a symmetric, positive definite stretch tensor Ysends the rotated frame r·{Ail into
the deformed frame {a;}. In terms of the unsymmetric strain tensor

E==Y·r,

we have

The rotator that sends {ail into {A;} has the representation[9, 13]

Here,

IL =cos (~/2)

and

II =sin (~/2}e,

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

where e is a unit vector along the axis of rotation and ~ is the angle of rotation, reckoned
positive by the right-hand rule; 1111 denotes a direct product, IL and (the Cartesian components
of) II are called Euler parameters.t Use of II and IL in place of the finite rotation vector
'" = 21111L, which is used in[8] and[10], leads to linear equations for the determination of the
9-dependence of IL and II. Analogous to Q, r may be represented in terms of a finite shear-twist
vector y. (See [8] for more details.)

3. THE ROTATION FIELD

The bending of the shell may be described by two vectors[8, II, 12] k.\ and Ke. defined,
respectively, as the axial vectors of the skew tensors Q,.QT and Q' . QT. In what follows it
proves to be convenient to work with the rotated frame {E;} & {E" EtIt Ez}, where

(3.1)

Note that

(3.2)

1. . [(b 2+r2
) cos tP - rb sin tP

- [A'· E·] =[a'·e·] = - b sin tP cos tP ra I I
- a1/2r sin <p - a112b cos <p

(3.3)

tl thank Prof. Harold Morton for pointing out to me the advantages of the Euler parameters.
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where Ai .Aj = a' .aj = 8/, the Kronecker delta. As

ej' =0 and e,' =e, x ej,

it follows that

E,' = Q' . Cj = Q' . QT . E; = K, x Ej

Equation (3.70) of [8], when expressed in terms of p and Il, takes the form

Let

and, noting the tensor form K" = K"/3A l' x N+ K"N = E1'/3K/Al' +K"N, set

(3.4)

0.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Our task is to determine from (3.8) the explicit 8-dependence of Il and p given that (K/,
Ks.

8
, ... ) [and hence (KsSJ Ks8,.,,)] are functions of s only.
First, we take the dot product of both sides of (3.8) with p. Noting that

and hence that

p .p.+ Illl' = 0,

we obtain

Next, we use (3.12), (3.14), and the fact that the equation

x+axx=b

has the unique solution ([13], Exercise 1.9)

b+(a'b)a+ bx a
x=

1+a'a

to obtain from (3.8),

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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If we introduce the notation

then by (3.6)

and (3.17) takes the final form

17

(3.18)

(3.19)

(3.20)

Equations (3.14) and (3.20) together form a linear, fourth-order skew system that we may
write, schematically, as

(3.21)

As the components of band k are functions of s only, (3.21) is, formally, a constant coefficient
equation. Being skew it has solutions of the form

where

riP! +b x I .k] [.!] =0 b =b;E;,
k· lp m '

and p satisfies the characteristic polynomial

Let

1 1
q =t(l-Ib+ kl) = ¥1-IK9 +E:I)·

Then the four roots of (3.24) are ± q and ±(1- q). Note that q ....Oas K9 .... O.
Proceeding as we did from (3.8) to (3.20), we find that (3.5), (3.7), and (3.12) imply

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Introduction of (3.10) and (3.22) shows that P is a constant. Hence, by (3.25), K9 must be of the
form

K9 =- E: +(1-2q)U, lUI =1, (3.28)

where the components of U in the frame {Ea are functions of s only.
Henceforth, with little loss in generality and considerable saving of algebra, we shall discard

the solutions associated with the roots ± (1- q). The reason is this.
Let IJB and ILB be any vector and scalar functions independent of 8, and let (Ii, p.) be any

SS Vol. 20. No. 1-8
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non-trivial solution of (3.21). Then, as may be verified by direct substitution,

(3.29)

also satisfies (3.21). (This is the nonlinear addition formula for successive finite rotations given,
for example, in [9].) Indeed, every solution of (3.21) is of the form (3.29), for we may always
choose Ih and J.1.s so that fJ and J.1. meet any initial conditions. Here we are appealing to the
existence and uniqueness theorem for a system of linear ordinary differential equations with
coefficients that depend analytically (as we shall assume) on a parameter (5 in our case): two
solutions that agree at a point exist and agree everywhere. But (3.29) must also satisfy 0.26)
and (3.27). Substituting, we find that, in fact, fJB and J.1.B must be constant.

In summary, all solutions to (3.2) are generated by superimposing, according to (3:29), a rigid
body motion on any non-trivial solution of (3.21). We shall take that non-trivial solution to be
acertain linear combination of the solutions associated with ± q, adjusting any arbitrary functions
of s so that fJ -+ 0 as K" KII -+ O. Should rigid body solutions be needed. they can be gotten from
(3.29).

To complete the solution of the eigenvalue problem (3.23), we take J.1., which is real, in the
form

J.1. :: !1tC(s)e iqe = A(s) cos [qe + o'(s)], (3.30)

where C(s) = A(s)eiu
(,) and ~ denotes "the real part of". From (3.21). (3.23), and (3.28),

(3.31)

Writing the solution for fJ as

we have, by (3.15), (3.16), and (3.30),

b = C[U x E, + i(U +E,)]
1+U·Ez •

(3.32)

(3.33)

As fJ has the same components in the frames {Ei } and {ei}, symmetry dictates that U :: ez,

To further reduce (3.32) set

U=ez =sin I/1(cos aE, + sin aEe) + cos I/1Ez

A = B cos (1/1/2),

where 1/1, a, and B are functions of s. Then

ez x Ez = sin I/I(sin aE, - cos aEe) == - 2 sin (#2) cos (I/112)ee

ez + Ez = 2 cos (1/I/2)[sin (I/112)(cos aEr + sin aEe) + cos (I/112)E,]

== 2 cos (1/1/2)J.1.

and

fJ = - [sin (1/112) cos (q8 +O')ee + sin (q8 +O')p].

The condition II '11 + J.1. 2=1 yields B :: 1. Thus

J.1. = cos (1/112) cos q8

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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and in the frame ({Eil,
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fJ = - sin (I/I/2)[sin (q8 +u - a)E, +cos (q8 +u - a)Ee]- cos (1/1/2) sin (q8 +u)Ez- (3.40)

If K.. Ke-+O, t/J, u, q-+O and {Ej}-+{ej}, but a remains indeterminant.
We infer from (3.40) that Q= R· S, where Rand S are rotators with associated Euler

parameters

fJR = sin (t/J/2)[sin (a!2)e, - cos (a/2)ee] - cos (""2) sin (a/2)ez

""R = cos (a/2) cos (t/J/2)

fJs = - sin (q8 + 'Y/2)ez, ""s = cos (q8 + 'Y/2),

where

'Y=2u-a

and

As S is merely a rotation about - ez through an angle 2q8 + 'Y,

e, = cos (2q8 + 'Y)e, - sin (2q8 + 'Y)ee

ell = sin (2q8 + 'Y)e, +cos (2q8 + 'Y)elh

from which follow

The relation Ej = R· ej takes the explicit form

E, = cos a cos I/Ie, - sin aee +cos asin I/Iez

Ee= sin a cos I/Ie, +cos aee +sin a sin t/Jez

Ez =- sin t/Je, +cos I/Iez•

(3.41)

(3.42)

(3.43,3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49,3.50)

(3.51)

(3.52)

(3.53)

Note that (3.40) for fJ is recovered from (3.41) to (3.44) by applying (3.29) with (fJR, ""R) and (fJs,
""s) in place of (6, ,1) and (fJB, ""B), respectively.

The decomposition Q=R.S is useful because ""R and the components of fJR in the basis {eil
or {E;} are functions of s only. At the same time, the basis {e;} is almost as simple as the basis
{e;} = {en ee.ez}.

4. THE BENDING FIELDS

It follows immediately from (3.28) and (3.34) that

Ke=(1- 2q)ez - Ez-

Using (3.12), (3.15), and (3.16), we solve (3.27) for K. to get

(4.1)

(4.2)
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From (3.27), (3.40), and (3.51)-(3.53) follows

(4.3)

The simplicity of (4.1) anti (4.3) seems remarkable.
To get the components of K. and Ko in the frame {AI}, Jet {SI} =: {e:,E:,fo). Then from (3.2),

(3.34) and (3.36)

where

[

sin <lJ sin c/>

[AI' Sj] =: r sin t/J sin a +b cos t/J b
cos E a -112 r eos c/>

- sin a cos c/>J
r cos a ,
cos Z

(4.4)

sin <P =: Ax •ez = cos c/> sin t/J cos a + sin cf> cos t/J (4.5)

cos S::; N· e: = a II2[r(cos cf> cos t/J - sin cf> sin t/J cos a) - b cos cf> sin t/J sin a] (4.6)

cos Z N· eo = a - 1/2(r sin cf> sin a - b cos cf> cos a). (4.7)

It now follows from (3.2), (3.10), (3.11), (4.1), (4.3), and (4.4) that

A, . K, =: a112K,.o = -i sin <P - a' sin cf> + t/J' sin a cos cf> (4.8)

- Ao ' K.• =: a 112K..' =: i(r sin t/J sin a + b cos t/J) +a'b + t/J'r cos a (4.9)

- Ao ' Ko=al/2Ka' =b -(l-2q)(r sin t/J sin a + b cos t/J) (4.11)

N. K.• = K = -"I' cos E - a- 1l2 a'r cos cf> t/J' cos Z (4.12)

N· Ka =: K o =: (1- 2q) cos E - a- 112r cos cf>. (4.13)

5. COMPATIBILITY
We introduce extensional-shear strain vectors by setting

Then (f')' =: (f')' implies that

(Aa +rey = (As +r,)·.

A first integral of (5.2) follows immediately from (1.3):

Two more scalar compatibility equations may be obtained by setting, in (5.2),

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

As all components in (5.4) and (5.5) are functions of s only, it follows from (3.49) and (3.50)
that the e, and ea components of the resulting equations satisfy

a~o - "I'aa, - (1- 2q)asr =: o.

(5.6)

(5.7)
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We introduce mixed components of strain by setting

r. = E/A. +E/As + E.N

r, = E,.'A. + E,.'A, +E,N.

and note from (3.2) and (3.51) to (3.53) that

As . e, = cos q, cos !/J cos ex - sin q, sin !/J == cos A

A, •e, = r cos !/J sin ex - b sin !/J

!I

(5.8)

(5.9)

(5.10)

(5.11)

N. e, = - a-1/2[r(sin q, cos !/J cos ex +cos q, sin !/J) +b cos q, cos!/J sin ex) == cos n.
(5.12)

With these relations and (4.4), we find that

Ii., = (I + E':) cos A+ E.."(r cos !/J sin a - b sin !/J) + E. cos n (5.13)

iifHj = - E9.'- cos q, sin ex + (1 + E,.')r cos a + E, cos Z (5.14)

a,H =- (1 + E..... )cos q, sin a + E•.'r cos a + E. cos Z (5.15)

ii" = E,.' cos 11.+(1 + E,.')(r cos!/J sin a - b sin!/J) + E, cos n. (5.16)

and (5.3) takes the more explicit form

E,.' sin <I> + (1 + E,.')(r sin !/J sin a + b cos !/J) + E, cos 5 = b. (5.17)

Once angles and strains are known, i, to within a rigid axial displacement, follows from (5.4),
(5.8), and (4.4) as

i = I[l( + Es.') sin <I> + E/(r sin !/J sin ex + b cos !/J) + E. cos E) ds. (5.18)

To express i in terms of angles and strains, we use (3.50), (5.1) and (5.2) to write

(5.19)

But as ii" and ii" are functions of s only, it follows from (5.14) and the compatibility
conditions (5.6) and (5.7) that

(5.20)

where i is.given by (5.18). Comparing (1.3) with (5.20) we find, with the aid of (3.47) and (3.48),
that

A= (1- 2q)

(1- 2q);:= (ii~+ ii~,)1/2

(5.21)

(5.22)

(5.23)

6. SATISFACTION OF THE FORCE EQUILIBRIUM EQUATIONS
Let (a 1I2N')" and (a 1/

2N')' denote, respectively, the rate of change of force/initial length
along the deformed coordinate curves s = constant and 9:= constant, and let p denote the
force/initial area acting on the shell in its deformed shape. Then the vector differential equation
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of force equilibrium is

(6.1)

Clearly, e, is a distinguished direction before and after deformation. This suggests the
decomposition

p == (p . ez)ez +ez x (p x ez )

== (1- 2q)(qzez+ez x q) (6.2)

(6.3)

To obtain stress components that are functions of s only, we assume that qz, q" and qe are
functions of s only. Using (3.50), we may express (6.1) in the divergence-free form

[a 1/2N' +(1- 2q)(J: q, dt) e,r+ [a 1/2(N
e +q)] == O.

This equation may be satisfied identicaIly with a vector stress-function F by setting

Let us introduce the component representation

N' == N\;A' +N'~Ae +Q'N

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

If the above components are to be functions of s only, then, except for null stress terms, F
must be of the form

F == F,(s)e, +Fe(s)ee + [F,(s) +(1- 2q)C8]e,. {6.9)

It follows from (1.2), (2.5), (3.47), (3.48), (6.4), and (6.8) that 27TC is the axial force per tum of
the deformed sheIl along the deformed coordinate curve s = constant. From (3.49), (3.50), (6.5)
and (6.6),

a 1I2N' = (1- 2q)[ - Fee, +F,ee + (C - f a 1/2qz dt )ez] (6.10)

(6.11)

7. MOMENT EQUILIBRIUM
Consider a (skewed) panel of the shell whose undeformed midsurface occupies the region

o-=: SI < S < S2 -=: L, - e -=: 81< 8 < 62 -=: e. If there are no distributed surface couples, then
moment equilibrium requires that

(7.1)
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As the size of the undeformed panel is arbitrary, this integral condition plus smoothness and
(6.1) implies the differential equation

(a 112Ms)' + (a 112M')' + r' x aI/2Ns+ i" xa1/2N' =O. (7.2)

If we dot both sides of (7.1) with ez and note that (M' +r x NS
) • t z is independent of 6

because the strains are stresses are, then we may conclude that, in the limit as 62 -+ 611

[a112(MS +r x NS
) +f (r x p)a 112 dt] . ez= (1- 2q)B, (7.3)

where B, a constant, is the net axial moment per turn of the deformed helicoidal shell acting
over any deformed coordinate curve s =constant. This equation is a first integral of (7.2). Two
more scalar equations of moment equilibrium may be obtained by introducing components of
MS and M'. Noting the tensor form M'" = Mall A/3 x N+MaN = E'YIlMa~A,. + MaN ([8], eqn
(3.61), we set

iii Mire, +Ms,e, +M,ez

112.. .8 M"A M'·A.+ I/2M'N M- - +M- - +M-a M = ,. - sne a IE ere, 88e, ,er

(7.4)

(7.5)

Resolving r' x NS and i" x N' into components in the basis (en e" ez) and using (5.1), (5.2), (5.5),
(6.10) and (6.11) and the differentiation formulas (3.49) and (3.50), we obtain from (7.2) the
following equations in the e, and e, directions

M~, + 'Y'M." - (1- 2q)[M88 + F,i' + ii"Vo' a1/2qz dt - C)] + (F~- 'Y'F, - a1/2q,)b - a88F~= 0

(7.6)

M~, - 'Y'Ms, + (1- 2q)[M" - F,z' + as, Vo
s

al/2qz dt - C)] + a"F~ - (F~+ 'Y'F, + a112q,)b = O.

(7.9)

In addition, the above component representations give the first integral (7.3) the more explicit
form

M"; sin <I> - M·'.;(r sin !/I sin a +b cos !/I) +a112M' cos E

+aJ, - a"F, +f (a"q, +a.q.)a1/2 dt =(1- 2q)B. (7.10)

8. CONSTITUTIVE LAWS

To obtain a complete set of field equations, the compatibility conditions and moment
equilibrium equations must be supplemented by constitutive laws. Obviously, if the stresses and
strains are.to depend on s only, so must lU.y nonhomogeneities.

Appropriate stress and conjugate strain measures may be inferred from expression for the
virtual work per unit area of the undeformed midsurface. From eqn (3.65) of [8], this density,
specialized to our problem, takes the form

Nss3Eu + 2N3E + N 883E88 + Q'3E, + Q'3E, + N3E

+MU 3Ku + 2M3K + MII3K. + M'8K, + M'3K, +M3K, (8.1)

where

N = !(N" +N"), N=!a1/2(N" - N") (8.2)

(8.3)
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with analogous expressions for M, M, K, and K. We have used co- and contravariant
components in (8.1)-(8.3) as the corresponding forms with mixed components are a bit more
complicated.

The strain energy per unit area of the undeformed midsurface has the form

so that

lP == 4>(E,... E, ... , K)

N" == aO: ,N == ~;, •.• , M== a~.
$I aK

(8.4)

(8.5)

As the components of pand F are the basic unknowns, we assume that (8.5) can be solved for
the extensional, shear, and twist strains as functions of the bending strains and stress resultants.
Then, by a Legendre transformation, we may introduce the mixed energy density

'I' == lP - (N"E" +2NE + ... +NE)

so that

In the classical, smaIl strain theory of elasticaIly isotropic sheIls,

'I' == !D[K"K$I + K 66K86 +21J,K"K86 +2(l-IJ,)K 2
]

- !A[N"Ns• +N 88N88 - 2vN"N88 +2(1 + v)N 2
],

(8.6)

(8.7)

(8.8)

where D is the bending stiffness, A is the stretching compliance, and I.l and v are Poisson ratios
of bending and stretching, all depending, in general, on s. Conventionally,

(8.9)

where E is Young's modulus and h is the shell thickness. When (8.7) is substituted into the
compatibility and moment equilibrium conditions, we obtain 6 equations for a, ,,/, t/J, F,., F8 and
F,.

9. SPECIAL CASES
The coordinates (s, 0) on the undeformed midsurface are orthogonal if b or lp is zero. If

b = 0, we have an (incomplete) shell of revolution: if cP == 0, a right helicoidal shell. Reissner
[5-7] and Wan [14] have studied special nonlinear boundary value problems for these respective
shells. We now show how our equations reduce to theirs.

Pure bending of a tube of arbitrary cross-section
To obtain Reissner's equations [7], set

b == a == "/ == 0.

Then a1/2 == r and from (4.5) to (4.7) and (5.10) to (5.12) we get

cos S == cos A == cos lP, cos Z == 0, cos n == - sin lP,

where

(9.1)

(9.2)

(9.3)
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Equations (4.9), (4.10), and (4.13) now reduce to

Ks.' = t/J', rK/ = (1- 2q) sin <I> - sin t/J, Ke = (1 - 2q) cos <I> - cos t/J. (9.4)

These bending strains agree with equations (14a, b) of [7]. If q = 0, we obtain the bending
strains for the torsionless, axisymmetric deformation of a shell of revolution.

If we assume further that Ee." = E"e = Ee= 0, then (5.13)-(5.16) reduce to

Q" = (1 +E..') cos <I> - E, sin <1>, Q88 = r(1 +Es,e), (9.5)

(9.6)

The compatibility conditions (5.6) and (5.17) are satisfied identically, while (5.7) reduces to

[r(1 +Ee,e»)' - (1- 2q)[1 +E..') cos <I> - E.• sin <1>] = O. (9.7)

This equation agrees with eqn (15) of [7], if it is noted that, because Reissner's normal to the
deformed midsurface is the negative of ours, his shearing strain is the negative of ours.

To get Reissner's static equations, set

F, = Fz = 0, p = o.

Then with the aid of (4.4) and (5.10) to (5.12), (6.10) and (6.11) reduce to

rN' = -(1- 2q)Fet, + Cez

(9.8)

= [ - (1- 2q)Fe cos <I> +C sin <I>]A, +[(1- 2q)Fe+C cos <I>]N (9.9)

These expressions agree with eqns (28) of [7].
The above assumptions plus M"iJ = Me; = M' = 0 imply, by (4.4), (5.10)-(5.12), (7.4) and (7.5)

that

(9.11)

(9.12)

The moment equilibrium equations (7.6) and (7.10) are satisfied identically, while (7.9) reduces
to

- (rM';)' +(1- 2q)[Meecos <I> - MS sin <I>
- (1 +E/)(C cos <I> +Fe sin <1» +E,(C sin <I> - Fe cos <1»] = O. (9.13)

If the normal stress couple component MS is set to zero. (9.13) reduces to eqns (21) and (28) of
[7], if it is noted that Reissner's shear strain 'Y and transverse shear stress resultant Q, by virtue
of his definition of the normal to the deformed midsurface, have the opposite sign as ours.

Extension and twist of a right helicoidal shell
We follow Wan (14] and use a semi-inverse method to obtain the kinematic and static

equations governing the gross extension and twist of a right helicoidal shell (r = c + s, t/J = 0),
stress free along its radial edges s =0 and s =1- That is, we retain only enough freedom among
the dependent variables to allow for the imposition of a net axial force P and a net axial torque
T over any edge 8 = constant. We assume that the constitutive laws are consistent with our a
priori assumptions, but do not attempt to give them explicit form. For a linear analysis using
the Kirchhoff Hypothesis, see Reissner and Wan (15].
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We first assume that

a = Tr12, I' =O.

With

r = a1/2 cos X, b = a1/2 sin X,

(4.5)-(4.7) and (5.10)-(5.12) reduce to

sin <t> =cos Z =cos A= 0, cos E= cos X, cos n = -sin X,

where

X=X+l/I·

The bending strains follow from (4.8) to (4.13) as

(9.14)

(9.15)

(9.16)

(9.17)

K,8 = a- 1/2 l/1', Ka' = sin X -(1- 2q) sin X, K8= (1- 2q) cos X -cos X (9.18)

K.' =K8
8 = K, = O. (9.19)

With the further assumption that

(5.13)-(5.16) yield

a.'8 =- (1 + E,'), a8, = a 1/2[(1 + E/) cos X - 1'8 sin Xl

a" = ii88 = 0,

(9.20)

(9.21)

(9.22)

where 1'8 = a-1/2E8 is the physical component of the non-zero transverse shearing strain. The
compatibility condition (5.7) is satisfied identically while (5.6) and (5.17) reduce to

{a 1/2([1 + ER
8

) cos X - 1'8 sin X]}'- (1- 2q)(I + E,') = 0

a 1/2[(1 +E8
8

) sin X + 1'8 cos Xl =b.

To obtain static equations, we assume that that

the last four conditions being constitutive assumptions. Then, with

(4.4), (5.10)-(5.12), (7.4) and (7.5) imply that

(9.23)

(9.24)

(9.25)

(9.26)

M~ = M'n A, . en = - a 112M, Ma, =- M8;Ae' e, = - M cos X. (9.27)

The moment equilibrium equations (7.6) and (7.10) are satisfied identically while (7.9) reduces to

(9.28)
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Overall force equilibrium along any edge 6= constant requires that

which, by (6.11) and (9.25), implies

Fr(L) - Fr(O) = 0, Fz(L) - Fz(O) = - P.

Overall moment equilibrium along any edge 8 = constant requires that

which, with the aid of (5.20), (7.5), (9.21) and (9.22), leads to the two scalar conditions
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(9.29)

(9.30)

(9.31)

LL {(1- 2q)(M cos X +m, sin X) - a1/2[(1 +B,.') cos X - 'Y, sin X]F~ ds = 0 (9.32)

LL {(1- 2q)(M sin X - m, cos X) +a1/2[(1 +B,.') cos X- 'Y, sin X]F~ ds = - (1- 2q)T,

(9.33)

a third condition being identical to (9.30»). In (9.32) and (9.33) m, = al /2M' is the physical
component of the non-zero normal stress couple.

Equations (6.10) and (7.4) plus the assumptions made in this section imply that the edges
s = 0, L will be stress free if

Fr(L) =Fr(O) =M(L) =M(O) =O.

A complete set of field equations follows upon specifying the mixed energy density

where,

K - ~(Ks' +K,s) =~[a 1/21/1' +sin X - (1- 2q) sin X].

(9.34)

(9.35)

(9.36)

10. IN EXTENSIONAL DEFORMATION

We extend Reissner's results for the inextensional deformation of split shells of revolution
(16] to general helicoids. Interestingly, it is of no help to determine the rotation field first.
Rather, we obtain T, 'T, and i directly, starting from (1.3).

With

we have

where, from (4.5),

er = cos(A8 - 'T)e% +sin(A6 - 'T)ey

e, =-sin(A6 - 'T)e% +cos(A6 - 'T)ey,

i' = As •ez= sin «1>.

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)
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The deformation being inextensional, we have. by (2.1) and (2.2),

ass == a, . a.I = 1=a, .a, = ,,2 + (fT,)2 + sin2<l>

These are 3 nonlinear equations for " <l>, and r.
From (10.8),

Thence, from (10.7)

_, bsin <l> - b sin et>
rr = (r2 +b2 _ i?)112 .

To get sin <l>, we first differentiate (10.9):

_, _ r cos et>
r - A(r2 + b2_ i?)1/2'

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

Then, substituting (10.10) and (10.11) into (10.6), we get a quadratic equation for sin <l> whose
solution is

(10.12)

where a is given by (2.6).
Equations (10.9) and (10.12) are explicit formulas for, and sin <l>. Substituted into (10.5) and

(10.10), they reduce the determination of zand 7' to quadratures.
The bending strains may be computed as the differences in the curvature tensors of the

deformed and undeformed midsurface. However, it is simpler to note, first, that (4.10), (4.1 t),
and (5.17) give

Then,

a 1/2K n
8 = A sin <l> - sin et>

a 1/2 KfJ' =b - Ab.

(10.13)

(10.14)

(10.15)

(10.16)

To compute K,.• (and thence K/), we follow Reissner [16] and note that, as the Gaussian
curvature G is unchanged in an inextensional deformation,

i.e.

2 K 2aG = bssb88 - b.o= (b.s+ K•• )(b08 + Koo )- (b.o+.8) ,

K = (2b.o+K.o)K.o- b••K80

s' b08 +K08 •

(10.17)

00.18)
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Here, from (2.1) to (2.3),

b.•s == p' a.: == p' 88 == - a- '12b cos2 cP

Finally,

K w K U K d K 8 K d+K ~s. == ua + sea , .•. == ssa ssa,

where

29

(10.19)

00.20)

(10.21)

(10.22)

(10.23)

Substituting (10.15), (10.16) and (10.19)-(10.21) into (10.18) and the resulting equation along with
(10.15) into (10.22), we obtain

K .• == _ -312{a[abG sin cP - A2 sin ct>(b sin ct> sin cP - b)]_ b( .J..I • .J.. + 2.J..)}
8 a •• _ ''1' Sin 'I' cos 'I' ,
. A[( " - b') sin ct> - bb sin cP]

where

(10.25)

(10.26)

If we set b == 0, our equations reduce to those of Reissner [16] for a slit shell of revolution. If
we set cP == 7ft2 (in which case r is a constant), we obtain equations for a cylindrical helicoidal
shell, which has been studied by Mansfield[17]. If we set cP == 0 and, == c +S, we obtain the
following displacement and bending fields for the inextensional deformation of a right helicoidal
shell.

i ==f sin <I> d,

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)
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